
Kurs Cours

10. Lokale Variablen und prozedurales Programmieren
 Variables locales et programmation procédurale

Die Gliederung dieses Kurses folgt in groben Zügen dem Buch von Nancy
Blachman: A Practical Approach....

Hinweis: Kapitel 10 lesen!
Run mit WIN+Mathematica Version 5.2

 L'articulation de ce cours correspond à peu près à celle du livre de Nancy
Blachman: A Practical Approach....

Indication: Lire le chapitre 10.
Testé avec Mathematica version 5.2+WIN

WIR94/98/99/2000/2007 // Copyright Rolf Wirz

10.1. Globale Variablen
 Variables globales

Mathematica stört es nicht, dass im folgenden Beispiel zweimal dieselbe globale Variable (hier "i") in verschiedenen
Bedeutungen gebraucht wird:

 Cela ne dérange pas Mathematica que dans l'exemple suivant on emploie deux fois la même variable globale (ici "i")
avec deux significations différentes:

In[1]:= f[n_]:=Table[g[i], {i,n}];
g[m_]:=Table[Log[i],{i,m}];

In[3]:= f[3]

Out[3]= 880<, 80, Log@2D<, 80, Log@2D, Log@3D<<
In[4]:= ??i

Global`i

Zum Vergleich: Pour comparer:

In[5]:= f[n_]:=Table[g[i], {i,n}];
g[m_]:=Table[Log[j],{j,m}];

KURS_10_New.nb 1

In[7]:= f[3]

Out[7]= 880<, 80, Log@2D<, 80, Log@2D, Log@3D<<
10.2. Lokale Variablen im Unterschied zu
 globalen Variablen
 Variables locales à la différence de
 variables globales

ü 10.2.1. Lokale Variablen in einer "Block"-Prozedur
 Variables locales dans une procédure "Block"

In[8]:= ??Block

Block@8x, y, ... <, exprD specifies that expr is
to be evaluated with local values for the symbols x, y, Block@8x = x0, ... <, exprD defines initial local values for x, Mehr…

Attributes@BlockD = 8HoldAll, Protected<
Betrachte das folgende Beispiel:

 Considère l'exemple suivant:

In[9]:= Clear[f,g];
f[n_] := Block[{i}, Table[g[i], {i, n}]];
g[m_] := Block[{i}, Table[Log[i], {i, m}]]

Ausprobieren: Essayer:

In[12]:= i

Out[12]= i

In[13]:= ?f

Global`f

f@n_D := Block@8i<, Table@g@iD, 8i, n<DD
In[14]:= f[n]

Table::iterb : Iterator 8i, n< does not have appropriate bounds. Mehr…

Table::iterb : Iterator 8i, n< does not have appropriate bounds. Mehr…

Out[14]= Table@g@iD, 8i, n<D
In[15]:= f[3]

Out[15]= 880<, 80, Log@2D<, 80, Log@2D, Log@3D<<
In[16]:= f[5]

Out[16]= 880<, 80, Log@2D<, 80, Log@2D, Log@3D<,80, Log@2D, Log@3D, Log@4D<, 80, Log@2D, Log@3D, Log@4D, Log@5D<<

KURS_10_New.nb 2

In[17]:= i

Out[17]= i

Was ist passiert? (Welcher Wert ist in "i" gespeichert?) Betrachte:
 Que s'est-il passé? (Quelle valeur est mémorisée dans "i"?) Considère:

In[18]:= Clear[f,g,i];
Block[{i}, i]

Out[19]= i

ü 10.2.2. Lokale Variablen in einer "Module"-Prozedur
 Variables locales dans une procédure "Module"

In[20]:= ??Module

Module@8x, y, ... <, exprD specifies that occurrences
of the symbols x, y, ... in expr should be treated as local. Module@8x = x0, ... <, exprD defines initial values for x, Mehr…

Attributes@ModuleD = 8HoldAll, Protected<
Vergleiche mit dem letzten Beispiel:

 Compare au dernier exemple:

In[21]:= Clear[f];
Module[{i}, i]

Out[22]= i$36

In[23]:= Clear[i];
Module[{i}, i]

Out[24]= i$37

Was bedeutet wohl die ausgegebene Zahl?
 Que signifie le nombre sorti?

Betrachte das folgende Beispiel:
 Considère l'exemple suivant:

In[25]:= Clear[f,g];
f[n_] := Module[{i}, Table[g[i], {i, n}]];
g[m_] := Module[{i}, Table[Log[i], {i, m}]]

Ausprobieren: Essayer:

In[28]:= ?f

Global`f

f@n_D := Module@8i<, Table@g@iD, 8i, n<DD

KURS_10_New.nb 3

In[29]:= f[n]

Table::iterb : Iterator 8i$42, n< does not have appropriate bounds. Mehr…

Out[29]= Table@g@i$42D, 8i$42, n<D
In[30]:= f[3]

Out[30]= 880<, 80, Log@2D<, 80, Log@2D, Log@3D<<
In[31]:= f[5]

Out[31]= 880<, 80, Log@2D<, 80, Log@2D, Log@3D<,80, Log@2D, Log@3D, Log@4D<, 80, Log@2D, Log@3D, Log@4D, Log@5D<<
In[32]:= i

Out[32]= i

Was ist passiert? (Welcher Wert ist in "i" gespeichert?)
 Que s'est-il passé? (Quelle valeur est mémorisée dans "i"?)

ü 10.2.3. Lokale Variablen mit "With"
 Variables locales avec "With"

Damit lassen sich Ausdrücke manipulieren:
 Par cela on peut manipuler des expressions:

In[33]:= ?With

With@8x = x0, y = y0, ... <, exprD specifies that in expr occurrences
of the symbols x, y, ... should be replaced by x0, y0, Mehr…

In[34]:= With[{x=2, y=a, z=b^3}, y Log[x^z]]

Out[34]= a LogA2b3E
In[35]:= Clear[x,y,z,r,s];

Solve[{x+2==r-s,s+1==y+2z,2r+z==-4x},{x,r}]

Out[36]= 99x → 1����6 H−4 − 2 s − zL, r → 1����6 H8 + 4 s − zL==
In[37]:= With[{z=4, s=Sin[z^2]},

Solve[{x+2==r-s,s+1==y+2z,2r+z==-4x},{x,r}]]

Out[37]= 99x → 1����3 H−4 − Sin@z2DL, r → 2����3 H1 + Sin@z2DL==

KURS_10_New.nb 4

10.3. Prozedurale Programmierung
 Programmation procédurale

Mathematica erlaubt prozedurale Programmierung, d.h. Befehlssequenzen mit
Wiederholungen und Verzweigungen. Studiere die folgenden Befehle:

 Mathematica permet la programmation procédurale, c'est-à-dire des séquences d'ordres avec des répétitions et des
ramifications. Etudier les ordres suivants:

In[38]:= ??Do

Do@expr, 8imax<D evaluates expr imax times. Do@expr, 8i, imax<D evaluates expr
with the variable i successively taking on the values 1 through imax Hin steps
of 1L. Do@expr, 8i, imin, imax<D starts with i = imin. Do@expr, 8i, imin,
imax, di<D uses steps di. Do@expr, 8i, imin, imax<, 8j, jmin, jmax<, ... D
evaluates expr looping over different values of j, etc. for each i. Mehr…

Attributes@DoD = 8HoldAll, Protected<
In[39]:= ?For

For@start, test, incr, bodyD executes start, then
repeatedly evaluates body and incr until test fails to give True. Mehr…

In[40]:= ?While

While@test, bodyD evaluates test, then
body, repetitively, until test first fails to give True. Mehr…

In[41]:= ?If

If@condition, t, fD gives t if condition evaluates to True, and f if it evaluates to False.
If@condition, t, f, uD gives u if condition evaluates to neither True nor False. Mehr…

In[42]:= ?Which

Which@test1, value1, test2, value2, ... D evaluates each of the testi in turn, returning
the value of the valuei corresponding to the first one that yields True. Mehr…

In[43]:= ?Switch

Switch@expr, form1, value1, form2, value2, ... D evaluates
expr, then compares it with each of the formi in turn, evaluating and
returning the valuei corresponding to the first match found. Mehr…

ü 10.3.1. Arithmetische Operationen auf bestehenden
Variablen wie Inkrementierung u.s.w.
 Opérations arithmétiques sur des variables existantes comme "increment" etc.

Studiere die folgenden Beispiele:
 Etudie les exemples suivants:

In[44]:= ??++

x++ increases the value of x by 1, returning the old value of x. Mehr…

Attributes@IncrementD = 8HoldFirst, Protected, ReadProtected<

KURS_10_New.nb 5

In[45]:= ?+=

x += dx adds dx to x and returns the new value of x. Mehr…

In[46]:= ?-=

x −= dx subtracts dx from x and returns the new value of x. Mehr…

In[47]:= ?*=

x ∗= c multiplies x by c and returns the new value of x. Mehr…

In[48]:= ?/=

x ê= c divides x by c and returns the new value of x. Mehr…

In[49]:= ?DivideBy

x ê= c divides x by c and returns the new value of x. Mehr…

In[50]:= i=1

Out[50]= 1

In[51]:= ++i

Out[51]= 2

In[52]:= i

Out[52]= 2

In[53]:= i++

Out[53]= 2

In[54]:= i

Out[54]= 3

In[55]:= i

Out[55]= 3

In[56]:= i +=6

Out[56]= 9

In[57]:= i -=5

Out[57]= 4

In[58]:= i *=7

Out[58]= 28

In[59]:= i /=4

Out[59]= 7

KURS_10_New.nb 6

ü 10.3.2. Iterative Konstruktionen
 Constructions itératives

Studiere die folgenden Beispiele:
 Etudie les exemples suivants:

In[60]:= Do[Print[3 n^2], {n,7}]

3

12

27

48

75

108

147

In[61]:= For[n=1, n<=7, ++n, Print[3 n^2]]

3

12

27

48

75

108

147

In[62]:= n=1;
While[n<=7, (Print[3 n^2]; n++)]

3

12

27

48

75

108

147

ü 10.3.3. Logik
 Logique

Studiere die folgenden Befehle:
 Etudie les ordres suivants:

KURS_10_New.nb 7

In[64]:= ?&&

e1 && e2 && ... is the logical AND function. It evaluates its arguments in order, giving
False immediately if any of them are False, and True if they are all True. Mehr…

In[65]:= ?And

e1 && e2 && ... is the logical AND function. It evaluates its arguments in order, giving
False immediately if any of them are False, and True if they are all True. Mehr…

In[66]:= ?||

e1 »» e2 »» ... is the logical OR function. It evaluates its arguments in order, giving
True immediately if any of them are True, and False if they are all False. Mehr…

In[67]:= ?Or

e1 »» e2 »» ... is the logical OR function. It evaluates its arguments in order, giving
True immediately if any of them are True, and False if they are all False. Mehr…

In[68]:= ?!

Information::notfound : Symbol ! not found. Mehr…

In[69]:= ?!!

n!! gives the double factorial of n. Mehr…

In[70]:= ?Not

!expr is the logical NOT function. It gives False if expr is True, and True if it is False.
Mehr…

In[71]:= ?Xor

Xor@e1, e2, ... D is the logical XOR Hexclusive ORL function. It gives
True if an odd number of the ei are True, and the rest are False. It gives
False if an even number of the ei are True, and the rest are False. Mehr…

Studiere die folgenden Beispiele:
 Etudie les exemples suivants:

In[72]:= (1 < 2) || (4 > 5/0)

Out[72]= True

In[73]:= (4 > 5/0) || (1 < 2)

Power::infy : Infinite expression 1�����0 encountered. Mehr…

Greater::nord : Invalid comparison with ComplexInfinity attempted. Mehr…

Out[73]= True

Von wo her wird also geklammert?
 D'où viennent les parenthèses?

KURS_10_New.nb 8

ü 10.3.4. Wahrheitstabellen
 Tableaux de verité

Ein Beispiel: Die folgende Aussageform soll untersucht werden:
 Un exemple: La forme propositionelle suivante soit examinée:

In[74]:= Clear[f];
f[x_:0, y_:0, z_:0, w_:0, u_:0, v_:0]:=

!(!x || (x && y)) || (x || ! y) && w;
AppendTo[Attributes[f], Listable]

Out[76]= 8Listable<
In[77]:= ??f

Global`f

Attributes@fD = 8Listable<
f@x_ : 0, y_ : 0, z_ : 0, w_ : 0, u_ : 0, v_ : 0D := ! H! x »» Hx && yLL »» HHx »» ! yL && wL

Die nachstehende Funktion definiert den "Input" in die Wahrheitstabelle:
 La fonction ci-dessous définit l'"Input" dans le tableau de vérité:

In[78]:= Remove[tabteil,tabelle];
tabteil[n_, k_]:= Permutations[

Table[Ceiling[Floor[n/i]/k],
{i,1,k}]];

tabelle = {};
t[k_]:=(Do[AppendTo[tabelle,tabteil[n,k]],

{n,0,k}];
tabelle = Sort[Flatten[tabelle,1]];
(tabelleTF=tabelle /. {0->False,

1->True});
Print[MatrixForm[tabelle]];
MatrixForm[tabelleTF]);

t[3]i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Out[82]//MatrixForm=i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

False False False
False False True
False True False
False True True
True False False
True False True
True True False
True True True

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

KURS_10_New.nb 9

In[83]:= Remove[tabteil,tabelle];
tabteil[n_, k_]:= Permutations[

Table[Ceiling[Floor[n/i]/k],
{i,1,k}]];

tabelle = {};
t[k_]:=(Do[AppendTo[tabelle,tabteil[n,k]],

{n,0,k}];
tabelle = Sort[Flatten[tabelle,1]];
(tabelleTF=tabelle /. {0->False,

1->True});
Print[MatrixForm[tabelle]];
MatrixForm[tabelleTF]);

t[4]i

k

jj

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

{

zz
Out[87]//MatrixForm=i

k

jj

False False False False
False False False True
False False True False
False False True True
False True False False
False True False True
False True True False
False True True True
True False False False
True False False True
True False True False
True False True True
True True False False
True True False True
True True True False
True True True True

y

{

zz
Und hier der "Output" in der entsprechenden Reihenfolge:

 Et voici l'"Output" dans l'ordre correspondant:

In[88]:= ??Map

Map@f, exprD or f ê@ expr applies f to each element on the first level in expr. Map@
f, expr, levelspecD applies f to parts of expr specified by levelspec. Mehr…

Attributes@MapD = 8Protected<
Options@MapD = 8Heads → False<

KURS_10_New.nb 10

In[89]:= f @@ Transpose[tabelleTF]

Out[89]= 8False, True, False, True, False, False, False,
False, True, True, True, True, False, True, False, True<

In[90]:= MatrixForm[Transpose[
Join[Transpose[tabelleTF],
{Table["|",{i,1,

Length[f @@ Transpose[tabelleTF]]}]},
{f @@ Transpose[tabelleTF]}]]]

Out[90]//MatrixForm=i

k

jj

False False False False » False
False False False True » True
False False True False » False
False False True True » True
False True False False » False
False True False True » False
False True True False » False
False True True True » False
True False False False » True
True False False True » True
True False True False » True
True False True True » True
True True False False » False
True True False True » True
True True True False » False
True True True True » True

y

{

zz

KURS_10_New.nb 11

In[91]:= Remove[tabteil,tabelle];
tabteil[n_, k_]:= Permutations[

Table[Ceiling[Floor[n/i]/k],
{i,1,k}]];

tabelle = {};
t[k_]:=(Do[AppendTo[tabelle,tabteil[n,k]],

{n,0,k}];
tabelle = Sort[Flatten[tabelle,1]];
(tabelleTF=tabelle /. {0->False,

1->True});
MatrixForm[Transpose[
Join[Transpose[tabelleTF],
{Table["|",{i,1,

Length[f @@ Transpose[tabelleTF]]}]},
{f @@ Transpose[tabelleTF]}]]]);

(*Anwendung*)
t[5]

Out[96]//MatrixForm=i

k

jjj

False False False False False » False
False False False False True » False
False False False True False » True
False False False True True » True
False False True False False » False
False False True False True » False
False False True True False » True
False False True True True » True
False True False False False » False
False True False False True » False
False True False True False » False
False True False True True » False
False True True False False » False
False True True False True » False
False True True True False » False
False True True True True » False
True False False False False » True
True False False False True » True
True False False True False » True
True False False True True » True
True False True False False » True
True False True False True » True
True False True True False » True
True False True True True » True
True True False False False » False
True True False False True » False
True True False True False » True
True True False True True » True
True True True False False » False
True True True False True » False
True True True True False » True
True True True True True » True

y

{

zzz
ü 10.3.5. Verzweigungen

 Ramification

Probiere aus: Essaie:

KURS_10_New.nb 12

In[97]:= ?If

If@condition, t, fD gives t if condition evaluates to True, and f if it evaluates to False.
If@condition, t, f, uD gives u if condition evaluates to neither True nor False. Mehr…

In[98]:= ?PrintForm

System`PrintForm

Attributes@PrintFormD = 8Protected<
In[99]:= PrintForm[Print"gagag"]

Out[99]= HorizontalForm@811, 1, 0, 0, 810, 4, 10, 2, 6<<,8Times, 400, None<, , , gagag, , Print, D
In[100]:=

?HorizontalForm

HorizontalForm is an internal symbol used for formatting and printing.

In[101]:=
?Write

Write@channel, expr1, expr2, ... D writes the expressions expri in
sequence, followed by a newline, to the specified output channel. Mehr…

In[102]:=
?WriteString

WriteString@channel, expr1, expr2, ... D converts the expri to strings,
and then writes them in sequence to the specified output channel. Mehr…

In[103]:=
?SequenceForm

SequenceForm@expr1, expr2, ... D prints as the
textual concatenation of the printed forms of the expri. Mehr…

KURS_10_New.nb 13

In[104]:=
Clear[t];
Do[(t=Table[(If[Random[]>0.5,

SequenceForm["omumo"],SequenceForm["wvovw"],
SequenceForm["bubu"]]),{i,7}];

Print[t[[1]],t[[2]],t[[3]],t[[4]],t[[5]],
t[[6]],t[[7]]]),{k,25}]

wvovwomumowvovwomumoomumowvovwwvovw

wvovwwvovwomumowvovwomumoomumoomumo

wvovwwvovwomumowvovwwvovwwvovwwvovw

omumoomumowvovwomumowvovwwvovwwvovw

wvovwwvovwwvovwomumowvovwwvovwomumo

wvovwwvovwwvovwomumowvovwomumowvovw

wvovwwvovwomumowvovwomumoomumoomumo

wvovwomumoomumowvovwwvovwomumoomumo

wvovwomumoomumowvovwomumowvovwwvovw

wvovwwvovwwvovwomumowvovwomumoomumo

wvovwwvovwomumoomumowvovwomumoomumo

omumoomumoomumowvovwwvovwomumoomumo

wvovwomumowvovwwvovwwvovwomumoomumo

wvovwomumoomumowvovwomumoomumowvovw

wvovwwvovwwvovwwvovwwvovwwvovwomumo

wvovwomumowvovwomumoomumowvovwwvovw

wvovwomumoomumowvovwwvovwwvovwwvovw

wvovwomumowvovwwvovwwvovwwvovwomumo

omumowvovwwvovwwvovwwvovwomumoomumo

omumoomumoomumoomumoomumowvovwwvovw

wvovwwvovwwvovwwvovwomumowvovwwvovw

omumowvovwomumoomumoomumoomumoomumo

omumowvovwwvovwwvovwomumoomumoomumo

omumowvovwwvovwomumowvovwomumoomumo

omumoomumoomumowvovwomumoomumoomumo

Verzweigung je nach Mathematica-Version:
 Ramification selon la version de Mathematica:

KURS_10_New.nb 14

In[106]:=
If[$VersionNumber < 2.0,

Plot[E^(-x^2) Cos[20x],{x,-2,2},Framed->True],
Plot[E^(-x^2) Cos[20x],{x,-2,2},Frame ->True]];

General::spell1 :
Possible spelling error: new symbol name "Framed" is similar to existing symbol "Frame". Mehr…

-2 -1 0 1 2
-1

-0.5

0

0.5

1

Mit Switch: Avec Switch:

In[107]:=
x=Random[Integer,{1,5}];
Print[x];
Switch[x^2,1,x,4,2x,9,3x,16,4x,25,-5x]

1

Out[109]=
1

In[110]:=
x=Random[Integer,{1,5}];
Print[x];
Switch[x^2,1,x,4,2x,9,3x,16,4x,25,-5x]

1

Out[112]=
1

In[113]:=
x=Random[Integer,{1,5}];
Print[x];
Switch[x^2,1,x,4,2x,9,3x,16,4x,25,-5x]

4

Out[115]=
16

Mit Which: Avec Which:

In[116]:=
signum[x_]:=Which[x<0.,-1,x==0.,0,x>0.,1]

KURS_10_New.nb 15

In[117]:=
Plot[signum[x],{x,-3,3}];

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

ü 10.3.6: Spaghetti-Code (resp. die "Chaos-Erzeugung"...)
 Code spaghetti (résp. la "génération du chaos"...)

Davon ist abzuraten!
 On le déconseille!

In[118]:=
?Goto

Goto@tagD scans for Label@tagD, and transfers control to that point. Mehr…

In[119]:=
?Label

Label@tagD represents a point in a compound
expression to which control can be transferred using Goto. Mehr…

In[120]:=
?Throw

Throw@valueD stops evaluation and returns value as the
value of the nearest enclosing Catch. Throw@value, tagD is caught only
by Catch@expr, formD where form is a pattern that matches tag. Mehr…

In[121]:=
?Catch

Catch@exprD returns the argument of the first Throw generated in the evaluation
of expr. Catch@expr, formD returns value from the first Throw@value, tagD for
which form matches tag. Catch@expr, form, fD returns f@value, tagD. Mehr…

ü 10.3.7: Beispiel aus der Statistik
 Exemple pris de la statistique

Der Median: La médiane:

KURS_10_New.nb 16

In[122]:=
median[liste_List]:=

Block[{
sl,
len

 },
 len = Length[liste];
 sl = Sort[liste];
 If[
 OddQ[len],
 sl[[(len+1)/2]],
 (sl[[len/2]]+sl[[len/2+1]])/2
]

]

General::spell1 :
Possible spelling error: new symbol name "median" is similar to existing symbol "Median". Mehr…

In[123]:=
median[{53,64,78,24,63,78}] // N

Out[123]=
63.5

In[124]:=
median[{76, 56, 23, 78, 34}]

Out[124]=
56

In[125]:=
median[{0,1,2,3,4,5,6}]

Out[125]=
3

In[126]:=
median[{1,2,3,4,5,6}] // N

Out[126]=
3.5

In[127]:=
median[{1,2,3,4,5,6,7}]

Out[127]=
4

Was ist der Median?
 Qu'est-ce la médiane?

"Putzmaschine" einsetzen
 Employer la "machine de nettoyage"

In[128]:=
(* Old Form: Remove["Global`@*"] *)

KURS_10_New.nb 17

In[129]:=
Remove@"Global`∗"D

KURS_10_New.nb 18

