KURS_10_New.nb

Kurs B Cours

10. Lokale Variablen und prozedurales Programmieren
B Variables locales et programmation procédurale

Die Gliederung dieses Kurses folgt in groben Ziigen dem Buch von Nancy
Blachman: A Practical Approach....
Hinweis: Kapitel 10 lesen!
Run mit WIN+Mathematica Version 5.2

B L'articulation de ce cours correspond a peu pres a celle du livre de Nancy
Blachman: A Practical Approach....
Indication: Lire le chapitre 10.
Testé avec Mathematica version 5.2+WIN

WIR94/98/99/2000/2007 // Copyright Rolf Wirz

10.1. Globale Variablen
I Variables globales

Mathematica stért es nicht, dass im folgenden Beispiel zweimal dieselbe globale Variable (hier "i") in verschiedenen
Bedeutungen gebraucht wird:

B Celane dérange pas Mathematica que dans I'exemple suivant on emploie deux fois la méme variable globale (ici "i")
avec deux significations différentes:

In[1]:= f[n_]:=Table[g[i], {i,n}];
g[m]:=Tabl e[Log[i],{i,m];

In(3]:= f[3]
Qut[3]= {{0}, {0, Log[2]}, {0, Log[2], Log[3]}}
In[4]:= ?7i

dobal i

Zum Vergleich: B Pour comparer:

In[5]:= f[n_]:=Table[g[i], {i,n}];
glm]:=Table[Log[j].{j.n];

KURS_10_New.nb

In[7]:= f[3]

Qit[7]= {{0}, {0, Log[2]}, {0, Log[2], Log[3]}}

10.2. Lokale Variablen im Unterschied zu
globalen Variablen

I Variables locales a la différence de
variables globales

10.2.1. Lokale Variablen in einer "Block"-Prozedur
I Variables locales dans une procédure "Block"

In[8]:= ??Bl ock

Block[{x, ¥y, ... }, expr] specifies that expr is
to be evaluated with local values for the synmbols x, y, Block]
{x =x0, ... }, expr] defines initial |ocal values for x, Mehr...

Attributes[Block] = {Hol dAI' |, Protected}

Betrachte das folgende Beispiel:
B Considére I'exemple suivant:

|n[9]:: Gear[f,g];
fIn_] Bl ock[{i}, Table[g[i], {i, n}]];
gl m] Bl ock[{i}, Table[Log[i], {i, m]]

Ausprobieren: B Essayer:

In[12]:= i
Qut[12]= i
In[13]:= 2f
d obal " f
f[n_]:=Block[{i}, Table[g[i], {i, n}]]
In[14]:= f[n]

Table::iterb: Iterator {i, n} does not have appropriate bounds. Mehr ...
Table::iterb: Iterator {i, n} does not have appropriate bounds. Mehr ...

Qut[14]= Table[g[i], {i, n}]

In[15]:= f[3]
Qut[15]= {{0}, {0, Log[2]}, {O, Log[2], Log[3]}}
In[16]:= f[5]

aut[16]= {{0}, {0, Log[2]}, {0, Log[2], Log[3]},
{0, Log[2], Log[3], Log[4]}, {0, Log[2], Log[3], Log[4], Log([5]}}

KURS_10_New.nb

In[17]:= i
Qut[17]= i
Wasist passiert? (Welcher Wert ist in"i" gespeichert?) Betrachte:

B Que sest-il passé? (Quelle valeur est mémorisée dans"i"?) Considere:

In[18]:= Cear[f,g,i];
Bl ock[{i}, i]

Qut[19]= i

10.2.2. Lokale Variablen in einer "Module"-Prozedur
I Variables locales dans une procédure "Module"

In[20]:= ??Mbdul e

Modul e[{x, y, ... }, expr] specifies that occurrences
of the synbols x, y, ... in expr should be treated as |ocal. Mdul e[
{X = x0, ... }, expr] defines initial values for x, Mehr...

Attributes[Mdul e] = {Hol dAI'l, Protected}

Vergleiche mit dem letzten Beispiel:
B Compare au dernier exemple:

In[21]:= Cear[f];
Modul e[{i}, i]

i $36

Qut [22]

In[23]:= Cear[i];
Modul e[{i}, i]

Qut[24]= i%$37

Was bedeutet wohl die ausgegebene Zahl?
B Que signifie le nombre sorti?

Betrachte das folgende Beispiel:
B Considére I'exemple suivant:

In[25]:= Cear[f,q];
fin_] Modul e[{i}, Table[g[i], {i, n}]
glm] Modul e[{i}, Table[Log[i], {i, n}]

l;
]
Ausprobieren: B Essayer:

In[28]:= 2f
d obal " f

f[n_]:=Mdule[{i}, Table[g[i], {i, n}]]

KURS_10_New.nb

In[29]:= f[n]

Table::iterb : Iterator {i$42, n} does not have appropriate bounds.

Qut[29]= Tabl e[g[i $42], {i$42, n}]

In[30]:= f[3]

Qut[30]= {{0}, {0, Log[2]}, {0, Log([2], Log[3]}}

In[31]:= f[5]

Qut[31]= {{0}, {0, Log[2]}, {0, Log[2], Log[3]},

Mehr ...

{0, Log[2], Log[3], Log[4]}, {0, Log[2], Log[3], Log[4], Log[5]}}

In[32]:= i

Qut[32]= i

Was st passiert? (Welcher Wert ist in"i" gespeichert?)
B Que sest-il passe? (Quelle valeur est mémorisée dans"i"?)

10.2.3. Lokale Variablen mit "With"
B Variables locales avec "With"

Damit lassen sich Ausdriicke manipulieren:
B Par celaon peut manipuler des expressions:

In[33]:= ?Wth

Wth[{x = x0, yv =y0, ... }, expr] specifies that in expr occurrences

of the synbols x, y, ... should be replaced by x0, yO,

In[34]:

Wth[{x=2, y=a, z=b"3}, y Log[x"z]]
out[34]= alog|[2”]

In[35]:= Cear[Xx,y,2z,r,8];
Sol ve[{x+2==r-s, s+1==y+27, 2r +z==-4x}, {X, r}]

Qut[36] = {{x+% (-4-2s-2), r e% (8+4s-2)}}

In[37]:= Wth[{z=4, s=Sin[z"2]},
Sol ve[{x+2==r-s, s+1==y+27, 2r +z==-4x}, {x, r}]]

Qut[37] = {{x»% (-4-Sin[z?]), r L2 (L+Sin(z?])}}

3

. . Mehr...

KURS_10_New.nb

10.3. Prozedurale Programmierung
I Programmation procédurale

Mathematica erlaubt prozedurale Programmierung, d.h. Befehlssequenzen mit

Wiederholungen und Verzweigungen. Studiere die folgenden Befehle:

B Mathematica permet la programmation procédurale, c'est-a-dire des séquences d'ordres avec des répétitions et des
ramifications. Etudier les ordres suivants:

In[38]:= ??Do
Do[expr, {imax}] eval uates expr imax tinmes. Do[expr, {i, imax}] eval uates expr
with the variable i successively taking on the values 1 through imax (in steps
of 1). Do[expr, {i, imn, imax}] starts with i = imn. Do[expr, {i, imn,
imax, di}] uses steps di. Dofexpr, {i, imn, imax}, {j, jmn, jmax}, ...]
eval uates expr | ooping over different values of j, etc. for each i. Mehr...

Attributes[Do] = {Hol dAI'l, Protected}
In[39]:= ?For

For [start, test, incr, body] executes start, then
repeatedly eval uates body and incr until test fails to give True. Mehr...

In[40]:= ?Wile

Wi l e[test, body] eval uates test, then
body, repetitively, until test first fails to give True. Mehr...

In[41]:= 2If

If [condition, t, f] givest if condition evaluates to True, and f if it evaluates to Fal se.
If[condition, t, f, u] gives uif condition evaluates to neither True nor Fal se. Mehr...

In[42]:= ?Whi ch

Wiich[testl, valuel, test2, value2, ...] evaluates each of the testi in turn, returning
the val ue of the valuei corresponding to the first one that yields True. Mehr...

In[43]:= ?Swi tch

Swi tch[expr, forml, valuel, fornR, value2, ...] evaluates
expr, then conpares it with each of the form in turn, evaluating and
returning the valuei corresponding to the first match found. Mehr...

10.3.1. Arithmetische Operationen auf bestehenden
Variablen wie Inkrementierung u.s.w.
I Opérations arithmétiques sur des variables existantes comme "increment" etc.

Studiere die folgenden Beispiele:
B Etudie les exemples suivants:

In[44]:= 22++

x++ increases the value of x by 1, returning the old val ue of x. Mehr...

Attributes[lncrenment] = {Hol dFi rst, Protected, ReadProtected}

KURS_10_New.nb

In[45]:= ?+=
X += dx adds dx to x and returns the new val ue of x. Mehr...

In[46]:= ?-=

X -= dx subtracts dx fromx and returns the new val ue of x. Mehr...

In[47]:= ?*=

x »=c multiplies x by ¢ and returns the new val ue of x. Mehr...
In[48]:= ?/ =

x /= c divides x by ¢ and returns the new val ue of x. Mehr...
In[49]:= ?Di vi deBy

x /= ¢ divides x by ¢ and returns the new val ue of x. Mehr...

In[50]:= i=1
Qt[50]= 1
In[51]:= ++i
Qut[51]= 2
In[52]:= i
Qt[52]= 2
In[53]:= i++
Qut[53]= 2
In[54]:= i
Qut[54]= 3
In[55]:= i
Qut[55]= 3
In[56]:= i +=6
Qut[56]= 9
In[57]:= i -=5
Qt[57]= 4
In[58]:= i *=7
Qut[58]= 28
In[59]:= i /=4

Qut[59]= 7

KURS_10_New.nb

10.3.2. Iterative Konstruktionen
I Constructions itératives

Studiere die folgenden Beispiele:
B Etudie les exemples suivants:

In[60]:= Do[Print[3 n*2], {n,7}]
3
12
27
48
75
108
147
In[61]:= For[n=1, n<=7, ++n, Print[3 n"2]]
3
12
27
48
75
108

147

In[62] := n=1;
VWil e[n<=7, (Print[3 n"2]; n++)]

3
12
27
48
75
108

147

10.3.3. Logik
I Logique

Studiere die folgenden Befehle:
H Etudie les ordres suivants:

KURS_10_New.nb

In[64]:= ?&&

el & e2 && ... is the logical AND function. It evaluates its arguments in order, giving
Fal se imrediately if any of themare False, and True if they are all True. Mehr...

In[65]:= ?And

el & e2 && ... is the logical AND function. It evaluates its arguments in order, giving
Fal se immediately if any of themare False, and True if they are all True. Mehr...

In[66]:= ?|]|

el || e2 || ... is thelogical OR function. It evaluates its argunents in order, giving
True imediately if any of themare True, and False if they are all Fal se. Mehr...

In[67]:= ?0r

el || e2 || ... is thelogical OR function. It evaluates its argunents in order, giving
True imedi ately if any of themare True, and False if they are all Fal se. Mehr...

In[68]:= ?!

I nformation::notfound : Synbol ! not found. Mehr ...
In[69]:= ?!!

ni! gives the double factorial of n. Mehr...
In[70] : = ?Not

texpr is the logical NOT function. It gives False if expr is True, and True if it is Fal se.
Mehr...

In[71]:= ?Xor

Xor [el, e2, ...] is the logical XOR (exclusive OR) function. It gives
True if an odd nunber of the ei are True, and the rest are False. It gives
Fal se if an even nunber of the ei are True, and the rest are Fal se. Mehr...

Studiere die folgenden Beispiele:
B Etudie les exemples suivants:

In[72]:= (1 < 2) || (4 > 5/0)
Qt[72]= True
In[73]:= (4 > 5/0) || (1 < 2)
Power::infy : Infinite expression % encountered. Mehr ...
Geater::nord : Invalid conparison with Conplexlnfinity attenpted. Mehr ...
Qut[73]= True

Von wo her wird also geklammert?
B D'ou viennent les parenthéses?

KURS_10_New.nb

10.3.4. Wahrheitstabellen
I Tableaux de verité

Ein Beispidl: Die folgende Aussageform soll untersucht werden:
B Un exemple: Laforme propositionelle suivante soit examinée:

In[74]:

Cear[f];
f[x_:0, y_:0,

z_:0,

P(rx || (x
AppendTo[Attributes[f], Listable]

Qut[76]= {Listable}

In[77]:= ?7?f

d obal " f

w:0, u_:0, v_:0]:=
& y)) [l (x I 1y &w

Attributes[f] = {Listabl e}

20, u_ 0, vt 0] = (IX] (X&&Y))] (X] 1Y) &&W)

Die nachstehende Funktion definiert den "Input” in die Wahrheitstabelle:

B Lafonction ci-dessous définit |

Input" dansle tableau de vérité:

In[78]: = Renpve[tabteil,tabelle];
tabteil[n_,

tabell e

={}h

Tab

k_]:= Permutations]

le[Ceiling[Floor[n/i]/k],
{i, 1, k}HT;

t[k_]:=(Do[AppendTo[tabelle,tabteil[n, k]],

t[3]

P FRPRPPOOOO
P PRPOORrR,PEF OO

P ORFPORFrOFrOo

tabelle =
(tabel |l eTF=tabelle /. {0->Fal se,

{n, 0,k}];
Sort[Flatten[tabelle, 1]];

1->True});

Print[MatrixForntabelle]];
Mat ri xForn{ t abel | eTF]) ;

Qut[82]//Matri xForme

Fal se
Fal se
Fal se
Fal se
True
True
True
True

Fal se
Fal se
True
True
Fal se
Fal se
True
True

Fal se
True
Fal se
True
Fal se
True
Fal se
True

KURS_10_New.nb

10

In[83]:= Renove[tabteil,tabelle];
tabteil[n_, k_]:= Permutations|

Tabl e[Ceiling[Floor[n/i]/K],
{i, 1, k}HT;

tabelle = {};

t[k_]:=(Do[AppendTo[tabel l e,tabteil[n, k]],
{n,0,k}];
tabelle = Sort[Flatten[tabelle, 1]];
(tabel | eTF=tabelle /. {0->Fal se
1->True});

Print[MatrixForntabelle]];
Mat ri xForn{ tabel | eTF]);
t[4]

PRPRPRPRRPRPRPRRPOOOOOOOO
PRPPRPRPROOOORRRERRLOOOO
PP OORRPOORRLROORREROO
POPRPORORORORORORO

Qut[87]// Matri xFor m=

Fal se False False False
Fal se False False True
Fal se False True Fal se
Fal se False True True
Fal se True Fal se Fal se
Fal se True Fal se True
Fal se True True Fal se
Fal se True True True
True Fal se Fal se False
True Fal se False True
True Fal se True Fal se
True False True True
True True Fal se Fal se
True True Fal se True
True True True Fal se
True True True True

Und hier der "Output" in der entsprechenden Reihenfolge:
B Etvoici I"Output" dans|'ordre correspondant:

In[88]:= ??Map

Map[f, expr] or f /@ expr applies f to each element on the first |evel
f, expr, levelspec] applies f to parts of expr specified by |evel spec. Mehr...

Attributes[Map] = {Protected}

Options[Map] = {Heads - Fal se}

in expr.

Map [

KURS_10_New.nb

In[89]:= f @@ Transpose[tabel | eTF]

Qut[89]= ({Fal se, True, Fal se, True, Fal se, Fal se, Fal se,
Fal se, True, True, True, True, Fal se, True, Fal se, True}

In[90] : = MatrixForn{ Transpose]
Joi n[Transpose[tabel | eTF],
{Table["|",{i,1,
Length[f @@ Transpose[tabell eTF]]}]},
{f @@ Transpose[tabelleTF]}]]]

Qut[90]// Matri xForme

Fal se False False False Fal se
Fal se False False True True
Fal se Fal se True Fal se Fal se
Fal se False True True True
Fal se True Fal se Fal se Fal se
Fal se True Fal se True Fal se
Fal se True True Fal se Fal se
Fal se True True True Fal se

|
|
|
|
|
|
|
|
True False False False | True
|
|
|
|
|
|
|

True Fal se False True True
True Fal se True Fal se True
True Fal se True True True
True True Fal se Fal se Fal se
True True False True True
True True True False Fal se
True True True True True

KURS_10_New.nb

12

In[91] : = Renove[tabteil,tabelle];
tabteil[n_, k_]:= Permutations|

tabel l e

Tabl e[Ceiling[Floor[n/i]/K],
{i, 1, k}HT;
={}h

t[k_]:=(Do[AppendTo[tabel l e,tabteil[n, Kk]],

{n, 0, k}];
tabelle = Sort[Flatten[tabelle, 1]];
(tabel | eTF=tabelle /. {0->Fal se
1->True});
Mat ri xFor n{ Tr anspose[
Joi n[Transpose[tabel | eTF],
{Table["|", {i, 1,
Length[f @@ Transpose[tabel |l eTF]]}]},
{f @@ Transpose[tabell eTF]}]]]);

(* Anwendung*)

t[5]

Qut[96]// Mat ri xFor m=

Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True

Fal se False False False Fal se
Fal se False False True Fal se
Fal se False True Fal se True
Fal se False True True True
Fal se True Fal se Fal se Fal se
Fal se True False True Fal se
Fal se True True False True
Fal se True True True True
True False False False Fal se
True False False True Fal se
True Fal se True Fal se Fal se
True Fal se True True Fal se
True True Fal se Fal se Fal se
True True Fal se True Fal se
True True True Fal se Fal se

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
True True True True | Fal se
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Fal se False False False True
Fal se False False True True
Fal se False True Fal se True
Fal se False True True True
Fal se True Fal se Fal se True
Fal se True Fal se True True
Fal se True True Fal se True
Fal se True True True True
True Fal se Fal se False Fal se
True Fal se False True Fal se
True Fal se True Fal se True
True False True True True
True True Fal se Fal se Fal se
True True Fal se True Fal se
True True True Fal se True
True True True True True

10.3.5. Verzweigungen
I Ramification

Probiere aus: B Essaie

KURS_10_New.nb

In[97]:= ?If

If [condition, t, f] givest if condition evaluates to True, and f if it evaluates to Fal se.
Ifcondition, t, f, u] gives uif condition evaluates to neither True nor Fal se. Mehr...

In[98]:= ?Print Form
System Print Form

Attributes[PrintForm = {Protected}

In[99]:

Print Forn{ Print " gagag"]

Qut[99]= Hori zontal Form[{11, 1, 0, 0, {10, 4, 10, 2, 6}},
{Ti mes, 400, None}, , , gagag, , Print,]

In[100]: =
?Hor i zont al Form

Hori zontal Formis an internal synbol used for formatting and printing.

In[101]: =
?Wite
Wite[channel, exprl, expr2, ...] wites the expressions expri in
sequence, followed by a newine, to the specified output channel. Mehr...
In[102]: =

?WiteString

WiteString[channel, exprl, expr2, ...] converts the expri to strings,
and then wites themin sequence to the specified output channel. Mehr...

In[103]: =
?SequenceForm

SequenceFor mexprl, expr2, ...] prints as the
textual concatenation of the printed fornms of the expri. Mehr...

KURS_10_New.nb

In[104]: =

Clear[t];

Do[(t=Tabl e[(I f [Randon{] >0. 5,
SequenceFor n{ "ormuno"], SequenceFor n{ "wovw'],
SequenceForn "bubu"]]),{i, 7}];

Print[t[[1]],t[[2]],t[[3]],t[[4]],t[[3]],

t[re11. t[[7111).{k, 25}]

WV OV WO MU MW OVWO MU N o munow OVVWW OVW
W OVWW OVWOIMUNDW OVWO mMUnoomunoonuno
WV OVWW OVWOIMUNDW OVVWW OVVWW OVVWW OVW
ONMUNDOMUNDW OVWO MU NDW OV WW OVWW OVW
W OVWW OVWW OVWO IMUNDW OVVWW OVWOnuno
W OVWW OVVWW OV WO IMUNDW OV WO MUNDW OVW
W OVWW OVWOIMUNDW OVWO munoomuinoonuno
WV OVWO MUMomMuInow OVVWW OVWO munoonuno
WV OVWO MU Mo muInw OVWO mUnow OVWW OoVwW
W OVWW OVVWW OVWO ITUNDW OVWO munoonuno
W OVWW OVWOIMUNDO MUNoW OVWO munoonuno
OMUINMONMUNDONMUNDW OV WW OVWO MU Mo muno
WV OVWO MU MW OVVWW OVVWW OVWO munoonuno
WV OVWO NMUNMoMunw OVWO mUnoo munow ovw
W OVWW OVWW OVVWW OVVWW OVWW OVWOMuUno
WV OV WO MU MW OVWO MU o munow OVVWW OVW
WV OVWO NMUNMomMuInw oVWW OVWW OVVWW OVW
WV OV WO MU MW OVVWW OVVWW OVVWW OVWO MU
OMUNOW OVWW OVWW OVWW OVWO MU nmonuno
oMmMuINMOoNMUNDONMUNDONMUNDOMUMOVW OVWW OVW
W OVWW OVVWW OVVWW OV WO IMUNDW OVVWW OVW
OMUNMOW OVWO MUNDOMUNDOMUNDOo Mo Mo
ONMUNDW OVWW OVWW OVWO MU onunmonnuno
OMUNDW OVWW OV WO MU Nbvw OVWO Munmonuno
OMUNDOMUNDONMUNDW OVWONMUnmMonunmonunmo

Verzweigung je nach Mathematica-Version:
B Ramification selon laversion de Mathematica:

KURS_10_New.nb

I n[106]: =
I f [$Ver si onNunmber < 2.0,

Pl ot [EM(-x"2) Cos[20x],{x, -2, 2}, Franed- >True],
Pl ot [EM(-x"2) Cos[20x],{x,-2,2}, Frane ->True]];

Ceneral ::spelll:

Possi bl e spelling error: new synmbol nane "Franed" is simlar to existing synbol

ol s
AT AT

Mit Switch; B Avec Switch:

In[107]: =
x=Randoni I nt eger, {1, 5}1;
Print[x];
Swi tch[x*2, 1, x, 4, 2x, 9, 3x, 16, 4x, 25, - 5x]
1
Qut [109] =
In[110]: =
x=Randoni I nt eger, {1, 5}];
Print[x];
Switch[x"2, 1, x, 4, 2x, 9, 3x, 16, 4x, 25, - 5x]
1
out[112] =
In[113]: =
x=Randoni I nt eger, {1, 5}1;
Print[x];
Swi tch[x*2, 1, x, 4, 2x, 9, 3x, 16, 4x, 25, - 5x]
4
Qut[115] =
16

Mit Which: B Avec Which:

In[116]: =

si gnuni x_] : =Whi ch[x<0. , -1, x==0., 0, x>0. , 1]

"Frame".

Mehr ...

KURS_10_New.nb

16

I n[117]

10.3

.F_>I ot[signunix],{x,-3,3}];
1

-0.5¢

H

.6: Spaghetti-Code (resp. die "Chaos-Erzeugung"...)

I Code spaghetti (résp. la "génération du chaos"...)

Davon ist abzuraten!
B On ledéconseille!

In[118]:

I n[119] :

I n[120] :

In[121] :

10.3.

?Cot o

Goto[tag] scans for Label [tag], and transfers control to that point. Mehr...

?Label

Label [tag] represents a point in a conmpound
expression to which control can be transferred using Goto. Mehr...

?Thr ow

Thr ow[val ue] stops eval uation and returns val ue as the
val ue of the nearest enclosing Catch. Throw[val ue, tag] is caught only
by Catch[expr, form where formis a pattern that matches tag. Mehr...

?Cat ch

Catch[expr] returns the argunment of the first Throw generated in the eval uation
of expr. Catch[expr, form| returns value fromthe first Throw[val ue, tag] for
whi ch form matches tag. Catchlexpr, form f] returns f [value, tag]. Mehr...

7. Beispiel aus der Statistik
I Exemple pris de la statistique

Der Median; B Lamédiane:

KURS_10_New.nb

17

In[122] : =
medi an[liste_List]:=
Bl ock[{
sl ,
I en

}

len = Length[liste];

sl = Sort[liste];

[
addg | en] ,
sl[[(len+1)/2]],
(sl[[len/2]]+sl[[len/2+1]])/2

]

Ceneral ::spelll:
Possi bl e spelling error: new synmbol nane "nedian" is simlar to existing synbol

In[123] : =
medi an[{53, 64, 78, 24, 63, 78}] // N

Qut[123] =

63.5
In[124] : =

medi an[{76, 56, 23, 78, 34}]
Qut[124] =

56
In[125]: =

medi an[{0, 1, 2, 3, 4,5, 6}]
Qut[125] =

3
In[126]: =

medi an[{1, 2,3,4,5,6})] [// N
Qut[126] =

3.5
In[127]: =

medi an[{1, 2, 3,4, 5,6, 7}]
out[127] =

4

Wasist der Median?
B Qu'est-ce lamédiane?

"Medi an".

Mehr ...

"Putzmaschine" einsetzen
I Employer la "machine de nettoyage”

In[128] : =
(* dd Form Renove["dobal"@"] *)

KURS_10_New.nb

18

In[129]: =
Renmove["d obal ™ "]

